

SOFTWARE INTEGRATION MANUAL

Release v2.8 March 2024

NT RADAR PLATFORMS

Network Toll Solution Pvt. Ltd. Shipra Sun City, Indirapuram, Makanpur, Ghaziabad, Uttar Pradesh, 201014 GST Number: 09AAICN1018N1Z8

1. INTRODUCTION

This guide discusses the installation and use of the Network Toll Solution Software driver for the Network Toll Solution sensors including: NTSIGNAL, NTPROX and NTPRIME. The Network Toll Solution Software driver includes 3 main functionalities:

- **NTVUE** implement the main data processing to receive the point cloud from the sensor. This is a key component required for operating NTSIGNAL, NTPRIME and NTPROX. For NTPRIME the main processing burden is implemented directly on the radar.

- Viewer allows users to visualize the point cloud in real-time.

- Record allows users to save the point cloud into CSV format.

Additionally, we provide template programs to receive the point cloud in order for you to start implementing your own custom application.

[figure 1] Sensor and Software overview for NTSignal/NTProx and NTPrime case

Network Toll Solution Pvt. Ltd.

Shipra Sun City, Indirapuram, Makanpur, Ghaziabad, Uttar Pradesh, 201014 GST Number: 09AAICN1018N1Z8

info@networktoll.com | sales@networktoll.com Phone: +91 9289757018 | +91 9958097340

2. SYSTEM REQUIREMENTS

2.1 System Requirement NTSIGNAL / NTPROX

Below are the requirement for the installation and use of the sensor with NT Software driver:

- Operating System
 - o GNU/Linux Tested on: x86 Ubuntu 20.04 and 22.04 LTS
 - Note: ARM Linux platforms are supported. Please contact support for non-x86 platforms.
 - Note: for other operating systems, please contact support.
 - Kernel must support SocketCAN
- Hardware
 - 1 radar sensor (NTSIGNAL or NTPROX)
 - 1 CAN-FD receiver
 - This can be a CAN-FD to USB interface, or it can be a CAN peripheral on your embedded system that supports 8Mbps CAN-FD through SocketCAN.
- Software
 - o NTSoftware/ folder containing the NT software driver
 - 2.2 System Requirement NTPRIME

Below are the requirement for the installation and use of NTPrime with Network Toll Solution

Software driver:

- Operating System
 - o GNU/Linux Tested on: x86 Ubuntu 20.04 and 22.04 LTS
 - Note: ARM Linux platforms are supported. Please contact support for non-x86 platforms.
 - Note: for other operating systems, please contact support.
- Hardware
 - 1 radar sensor (NTPrime)
 - Power over Ethernet adapter (POE++ Power rating) OR 1000BASE-T to 1000BASE-T1 converter with 12V adapter
- Software
 - o NTSoftware/ folder containing the NTSoftware driver

Network Toll Solution Pvt. Ltd.

2.3 SETUP NTSIGNAL / NTPROX

1. For your evaluation convenience, we provide a complete kit to test our sensor with any Linux

computer. This includes the cable breakout, power supply, and CAN-FD interface.

- 2. For volume deployment in an embedded/ECU environment, NTSIGNAL can integrate directly into
- a CAN bus with a custom harness.
- 3. Connect the sensor to the computer as pictured and power it up with all the required cables.
 - Sensor -> Breakout Cable -> DB-9 cable -> CAN DB9 terminator -> CAN-FD to USB interface
 - o 12V 1A Power

4. Extract the archive network toll solution Software.zip, provided by our software team

5. Place yourself inside the unzipped network toll solution Software/ folder, right-click the mouse and select "open

in terminal" (you will now see a window terminal where you can run the commands that will follow).

Network Toll Solution Pvt. Ltd. Shipra Sun City, Indirapuram, Makanpur, Ghaziabad, Uttar Pradesh, 201014 GST Number: 09AAICN1018N1Z8

2.4 SETUP NTPRIME

• For your evaluation convenience, we provide a complete kit to test our sensor with any Linux computer.

This includes the necessary power supply and ethernet adapter.

- Connect the sensor to the computer as pictured.
 - Sensor -> POE++ Adapter -> PC (This for Automotive that already uses Ethernet)

Sensor -> 1000BASE-T1 to 1000BASE-T Converter -> 12V and PC (For Automotive

Requiring a 1000BASE-T1 to Ethernet Conversion)

- Extract the archive NTSoftware.zip, provided by our software team
- Place yourself inside the unzipped NTSoftware/ folder, right-click the mouse and select "open

in terminal" (you will now see a window terminal where you can run the commands that will

follow).

Network Toll Solution Pvt. Ltd.

4. QUICK START

4.1 Installing Prerequisites

Platform Prerequisites (for NTSignal and NTProx only)

Your system must support communication over CAN-FD. This can be achieved in two ways:

- Communication over a CAN-USB interface such as a PEAK-CAN device. This is typically used

for PC/x86 hosts

- Communication over an integrated CAN-FD peripheral with 8Mbps data rate support on an

embedded system. This is typically used for integrated systems such as Nvidia Jetson/Orin.

For evaluation and prototyping purposes we support testing our sensors on Linux x86 PC systems with

a PEAK-CAN USB interface as pictured in the previous section. SocketCAN is used to allow our

software driver to communicate with the CAN bus. To load the appropriate kernel modules:

\$ sudo modprobe can
\$ sudo modprobe peak usb

For other types of interfaces (including embedded CAN peripherals), contact our support team for integration help. software driver to communicate with the CAN bus. To load the appropriate kernel modules:

Software Prerequisites

Install dependencies with the following command on the terminal:

\$ sudo ./install dependencies.sh

Wait for all dependencies to install before proceeding.

4.2 RUNNING THE RADAR

With the radar powered up and connected, run the radar with the following command on the terminal.

Ctrl + C will terminate the process. In case of errors, try restarting the system by power cycling the

sensor and plugging/unplugging the USB-CAN interface or ethernet cable.

\$./run_radar.sh <radar_num> <radar_types> <radar_sns> <mode_ids> <viewer> <log>

For single-radar NTsignal or NTprox example:

\$./run_radar.sh 1 Ntsignal 3223AC002 1 on off

For single-radar NTprime example:

\$./run_radar.sh 1 Ntprime 3223AC001 1 on off

For multi-radar pass a list of values for every argument of every radar to run for example:

\$./run radar.sh 2 Ntsignal zsignal 3223AC001 3223AC002 1 1 on off

Replace <radar_num> with the correct number of sensors to launch. If more than 1 the rest of the attributes <radar_types>, <radar_sns> and <mode_ids> will contain a list of values for every radar respectively.

Replace <radar types> with the correct sensor type (lowercase): Ntsignal, Ntprox or zprime

Replace <radar_sns> with the correct sensor serial number you are using (label on the back of the sensor identified by 9 alphanumeric digits).

Replace <mode_ids> with the correct mode number defined in the table section 4.3 for your application. If you have a custom mode defined by the NT team, put the correct ID for the mode as provided to you.

Replace <viewer> with on or off to open the viewer if needed. More details about the viewer in section 4.4

Replace <log> with on or off to save into a .txt file the terminal outputs. The file will be created into a /logs/ folder in the NT software driver main folder.

4.3 RADAR MODES

Note: custom modes may override default modes based on custom specifications.

NTSPROX Modes

Mode ID	1	2	3	4						
Maximum Range	20m	50m	20m	50m						
Minimum Range	5cm	15cm	10cm	25cm						
Field of View (H x V)	140° x 120°									
Angular Resolution (HxV)	5° x 5° (dynamic)									
Range Resolution	4.4cm	11cm	9.1cm	21cm						
Vehicle Detection	20m	50m	20m	50m						
Pedestrian Detection	20m	>25m	20m	>25m						
Doppler Ambiguity *	27m/s 27m/s 52m/s 5									
Doppler Resolution	0.2m/s									
Doppler Accuracy	0.05m/s									
Frame Rate	40 Hz									

*The ego speed needs to be less than 1/4 of the provided range for Doppler Ambiguity.

NTSSIGNAL Modes

Mode Number	1	2	3	4							
Maximum Range	50m	100m	175m	175m							
Minimum Range	7cm	0.5m	0.5m	1m							
Field of View (H x V)		130° x 24°									
Angular Accuracy		3°									
Range Resolution	5.2cm	43cm	31.8cm	72cm							
Vehicle Detection	50m	100m	175m	175m							
Pedestrian Detection	50m	100m	>100m	>100m							
Doppler Ambiguity *	42m/s	158m/s	85m/s	158m/s							
Doppler Resolution		0.2m/s									
Doppler Accuracy		0.05m/s									
Frame Time	35ms	35ms 25ms									

*The ego speed needs to be less than 1/4 of the provided range for Doppler Ambiguity.

Network Toll Solution Pvt. Ltd.

Mode Number	1	2	3	4	5	6			
Max Range	85m	85m	250m	250m	400m	400m			
Minimum Range	0.1m	0.2m	0.3m	0.75m	0.5m	1m			
Range Resolution	8.9cm	17.8cm	26.2cm	52.3cm	41.9cm	82.2cm			
Doppler Ambiguity	74.4m/s	143.4m/s	74.4m/s	143.4m/s	74.4m/s	143.4m/s			
Doppler Resolution	0.145m/s	0.14m/s	0.145m/s	0.14m/s	0.145m/s	0.14m/s			
Field of View (H x V)		130° x 24° (Narrow FoV) / 130° x 48° (Wide FoV)							
Angular Resolution (H x V)		0.35° x 0.35°							
Frame Time			100	ns					

NTPRIME Modes For Dynamic Platforms (Narrow / Wide FoV Variant)

* The ego speed needs to be less than 1/4 of the provided range for Doppler Ambiguity.

NTPRIME Modes For Traffic Monitoring Applications (Narrow / Wide FoV Variant)

Mode Number	1*	2	3			
Max Range	85m	250m	400m			
Minimum Range	0.2m	0.75m	1m			
Range Resolution	17.8cm	52.3cm	82.2cm			
Doppler Ambiguity	143.4m/s	143.4m/s	143.4m/s			
Doppler Resolution	0.14m/s	0.14m/s	0.14m/s			
Field of View (H x V)	130° x 24° (Narrow FoV) / 130° x 48° (Wide FoV)					
Angular Resolution (H x V)	0.35° x 0.35°					
Frame Time	100ms					

* Provided under request.

Network Toll Solution Pvt. Ltd. Shipra Sun City, Indirapuram, Makanpur, Ghaziabad, Uttar Pradesh, 201014

GST Number: 09AAICN1018N1Z8

NTPRIME Specification

Frequency	76-77 or	76-77 or 76-81GHz				
Interface	1000BASE-T1	1000BASE-T				
Connections	6-pin automotive	Waterproof RJ45				
Power Supply	+9-24V DC	802.3bt Type 3 (PoE++)				
Power Consumption	22W avg, 34W peak ba	22W avg, 34W peak based on transmit duty cycle				
Synchronization	IEEE 1588	IEEE 1588 PTP, gPTP				
Operating Temperature	-40°-85°C					
Ingress Protection	IP68 2-meter					
Dimensions	140 x 103 x 30mm					
Weight	490g					
Material	Polycarbonate black, 6061 aluminum black anodized					

4.4 VIEWING THE POINT CLOUD AND PROCESSED DATA

We provide a point cloud viewer for quick and easy visualization of the radar's output data. The viewer window allows you to visualize the point cloud and control a few features for visualization and filtering.

Basic commands:

- Left mouse button hold: tilt the view of the 3D point cloud.
- Right mouse button hold: translate or shift the view of the 3D point cloud.
- 'a': show axes
- '[space]': switches camera view from orthographic to perspective mode

Please refer to the figure on the next page for details about every section.

NT Viewer - Legend

- 1. Main header, allows to switch between viewer types and save/upload the configuration file.
- 2. Radar Monitor provides an overview over the main status of the radar and some configurations. In case of multi-radar processing, you will visualize multiple rows, one for each sensor.
- 3. Display settings allow you to change the grid, font, zoom of the viewer and color.
- 4. [NTSignal and NTProx_only] For every radar connected you will be able to:
 - a. Control the calibration settings to tune the position of the radar in respect to the vehicle. Also optional online automatic calibration of provided (Section 4.5 for more details about the automatic calibration procedure).
 - b. Filter on the point cloud, applied to the x,y,z,range,doppler and snr. Filters follow a min-max logic, so only points in that range will be visible to the viewer.
- 5. [Odometry deliverable only provided under request] For every radar allows to visualize the evolution of the estimation of linear velocity and rotational velocity of the moving vehicle where the radar is placed.
- 6. [<u>Tracking deliverable only provided under request</u>] Allows to visualize the active tracks identified in the pointcloud live, also with some information about every track's speed, range, status (confirmed or confirmed_stopped) and the class identified (feature coming soon). You will also be able to see all the corresponding tracks directly on the point cloud with a square and a line indicating the direction of movement.
- 7. When the "2D" option is selected from the main header the default 3D point cloud will switch to 2D point cloud with on the x axis the doppler value and the y axis the range.
- 8. [<u>Tracking deliverable only provided under request</u>] When the "Heatmap" option is selected from the main header, the default 3D point cloud will switch to an heatmap viewer where the green color intensity shows the presence of static points, red color for dynamic points and blue for no points.

Network Toll Solution Pvt. Ltd. Shipra Sun City, Indirapuram, Makanpur, Ghaziabad, Uttar Pradesh, 201014 GST Number: 09AAICN1018N1Z8

www.networktoll.com

info@networktoll.com | sales@networktoll.com Phone: +91 9289757018 | +91 9958097340

4.5 RADAR CALIBRATION

For moving radar applications only (mounted on a vehicle) with NTProx and NTSignal, we allow to fine tune the radar calibration in respect to the vehicle directly on the viewer. The angle displacement of the radar in respect of the center of mass for all 3 axes of the vehicle can either be measured precisely by the customer, or, Network Toll Solution online calibration method can be utilized to accurately estimate (azimuth phi).

The process for automatic online calibration will be as follows:

- Instruct the car driver or the ego platform (such as a robot) to proceed in a straight path without any wheel movement or rotation for at least 5 seconds.
- Press the calibration button on the viewer during this time (see section 4.4 for viewer calibration button)
- We recommend that the user align the theta and roll angles carefully using precise measurement devices to facilitate a smooth convergence of the algorithm.

[Figure 3] Indicative car-radar odometry

Calibration Settings	
▼ Calibration Monitor	
calibrated	
Calibrate Angles	
0%	Recording frames
0%	Processing frames
▼ Calibration Values	-80
0.000	phi
0.000	psi
0.000	theta
0.000	×
0.000	у
0.000	z

[Figure 4] Calibration settings on the viewer

4.6 ADVANCED CONFIGURATION

We allow mainly 2 types of advanced configuration related to track filtering and fence filtering:

• <u>Fence filtering</u>: when the viewer is in 3D mode by clicking 'F' on the keyboard you activate the interactive fence drawing that allows you with the left click of the mouse to directly place the fence vertices on the map on bird-eye view (means only x, y will be considered). Once placed on all the vertices by clicking again 'F' you will confirm and save the fence that will appear on the radar settings under the fence filter section.

				2.2		100	j f	7 F	ilter Sett	ings	(ACTIVE	:)			
· · · ·						en L	1 3	▼	Point Filt	ers (ACTIVE)			
					1	90			🗸 All. point	s min	/max (
			-						x:	-1000	9.000		min	1000.000	max
	1					80			y:	-1000	9.000		min	1000.000	max
			. '						z :	-25.0	00		min	20.000	max
						70	1995 1995		range:	1.000)		min	400.000	max
									doppler1:	-1000	9.000		min	1000.000	max
									snr:	0.000)		min		
					C ¹	(po		▼	Fence Filt	ers (
						FO	1		🖊 Draw fend	ce					
						<u>в</u> 0			🖊 Use Fence	es Ren	noval				
									Reset fend	e fil	ters				
						40	à		Fence 1						
									42.791			52.420		y	
						30			43.370			11.874		y	
						1.1			4.127			13.901		y	
-						20			3.258			41.704		y	
									20.925			76.313		y	
						10			🗸 Conside	r sta	tic	🗸 Cons	ider d	lynamic	
									🗸 Exclusi	on		🗸 Acti	ve		
00		EO	4.0		500										

 <u>Track automated filtering</u>: Under the Display section "Track settings" you have the option of activating/deactivating the track filtering that estimates the boundaries of the environment to properly filter out incorrect tracks.

▼ Display						
Point of view: Gr	ound	Close	Normal	Medium	Far	
2.000		Fo	nt scale			
93		Zo	om level			
2.590		St	atic point	s size		
2.612		Dy	namic poir	its size		
▼ Track display set Show Track Labe	tings: 1					
5			Track trai	l lenght		
Use Track autom	ated f	ilter				
▼ Unknown						
30.	0		Min mediu	m-speed 1	imit	
100.			Min fast-speed limit			
▼ Van						
30.	0		Min mediu	m-speed 1	imit	
100.			Min fast-	speed lim	nit	
▼ Car						
30.	0		Min mediu	m-speed 1	imit	
100.			Min fast-	speed lim	nit	
 Truck 						
30.	0		Min mediu	m-speed 1	imit	
100.			Min fast-	speed lim	nit	
▶ Color Settings ▶ Grid Settings						

Network Toll Solution Pvt. Ltd.

4.7 CAPTURING THE POINT CLOUD AND PROCESSED DATA

4.7 Capturing the Point Cloud and processed data

Record the data to CSV file

While the sensor is running you have the option to record the point cloud and other data into a .csv file. By running the following command into a new terminal tab, the script will create a new folder containing the saved point cloud, odometry, clusters and/or tracks data in csv format (1 frame per file). Ctrl+C to stop the recording.

\$ sudo ./record csv.sh <radar num> <scan> <odometry> <clusters> <tracks>

For recording scan and not odometry/clusters/tracks example:

\$ sudo ./record_csv.sh 1 on off off

Output format

In the "logs/" folder you will find a new folder containing the saved files in the following format with type=[scan,odometry,tracks]: /logs/<timestamp>/NT_<type>0_frame<frame_id>.csv

Receiving Real-Time data

In the "api_templates/" folder, we provide templates for Python scripts to allow receiving the point cloud, odometry, clusters and tracks frame by frame in real-time and connect to your own application. These templates are to be considered as a starting point to receive and forward the data to your own pipeline, and are openly available for you to modify and customize:

- ApiSocket.py
- ApiRos.py (Requires a specific network toll solution software version for ROS, please ask support from the NT software team)

Recording data to a bagfile (ROS)

Requires a specific NT software version for ROS, pleasæsk supporfrom the NT software team

While the sensor is running, you also have the option to record the point cloud into .bag format (if you have ROS available on your system). By running the following command into a new terminal tab, the script will create a new folder containing the saved point cloud into .bag format (entire stream per file). Ctrl+C to stop the recording.

\$ sudo ./record_ros.sh

Output format

In the "logs/" folder you will find a new directory containing the saved files in the following format: /logs/<timestamp>.bag

5 DATA FORMAT

The output coordinate system per radar is as follows:

Network Toll Solution Pvt. Ltd.

5.1. POINT CLOUD DATA-FORMAT

The point cloud data format of NTSIGNAL, NTPROX and NTPRIME is an array of points with following fields:

Header Per Frame

Field	ld Unit Description			
seq	_	Frame sequence number		
timestamp	ns	Time elapsed since sensor boot		
width	_	Number of points received in the frame		

Data Per Point

Field	Unit	Description
x	meters	X coordinate of point in meters
У	meters	Y coordinate of point in meters
z	meters	Z coordinate of point in meters
snr	dB	Signal to noise ratio. A higher SNR means increased confidence in the received point (Only available on NTSignal and NTProx)
power	dB	Relative power level of the point normalized (Only available on NTPrime)
range	meters	Radial range of the point in meters
noise	dB	Reserved variable
doppler	meters/second	Relative radial velocity of the point as measured via Doppler shift
adjusted_doppler	meters/second	Computed absolute radial velocity of the point in the ground reference frame
frame_num	frame number	Frame number counter starting from 0
is_static	bool	Flag to indicate if a point has been detected as stationary (not moving) relative to the environment

Network Toll Solution Pvt. Ltd.

5.2. ODOMETRY DATA-FORMAT

The odometry data format of NTSIGNAL, NTPROX and NTPRIME is a list of values with following fields:

Field	Unit	Description
vx	meters/second	Radar velocity over x axis smoothed
vy	meters/second	Radar velocity over y axis smoothed
omega	Radian/second	Radar rotational velocity smoothed
phi	degree	Radar yaw in respect to the vehicle
psi	degree	Radar roll in respect to the vehicle
theta	degree	Radar pitch in respect to the vehicle
raw_vx	meters/second	Radar velocity over x axis
raw_vy	meters/second	Radar velocity over y axis
raw_omega	Radian/second	Radar rotational velocity over z axis
frame_num	frame number	Frame number counter starting from 0

5.3. CLUSTERS DATA-FORMAT

The clusters data format of NTSIGNAL, NTPROX and NTPRIME is a list of values with following fields:

Field	Unit	Description
cluster_id	integer	Cluster incremental id
x	meters	Cluster center over x axis
У	meters	Cluster center over y axis
z	meters	Cluster center over z axis
doppler	meters/second	Average cluster points doppler
snr	dB	Average Signal to noise ratio for the cluster points
noise	dB	Reserved variable
d_min	meters	Minimum doppler in the cluster points
d_max	meters	Maximum doppler in the cluster points
r_min	meters	Minimum range in the cluster points
r_max	meters	Maximum range in the cluster points
frame_num	frame number	Frame number counter starting from 0

5.4. TRACKS DATA-FORMAT

The tracks data format of NTSIGNAL, NTPROX and NTPRIME is a list of values with following fields:

Field	Unit	Description
track_id	integer	Track incremental id
x	meters	Track coordinate over x axis
У	meters	Track coordinate over y axis
Z	meters	Track coordinate over z axis
VX	meters/second	Track velocity over x axis
vy	meters/second	Track velocity over y axis
VZ	meters/second	Track velocity over z axis
ax	meters/second^2	Track acceleration over x axis
ау	meters/second^2	Track acceleration over y axis
az	meters/second^2	Track acceleration over z axis
уам	Radian	Track yaw in respect to radar origin and track position
speed	meters/second	Track resulting speed vector
state	string	Track state confirmed or confirmed_stopped
frame_num	frame number	Frame number counter starting from 0